
10kTrees - Exercise #4 
 

Running Analyses Across a Tree Block –  
Phylogenetic Signal and Correlated Evolution 

 
 
 
Once you have your block of trees, you are ready for running comparative analyses, 
such as reconstructing ancestral states, investigating the factors that influence 
speciation and extinction rates, or testing for correlated evolution.   
 
How does one run a set of analyses across a tree block?  You need to run your planned 
analysis across 100, or 1000, or even 10,000 trees.  But you don’t want to spend weeks 
doing this.  Thus, the analysis needs to be automated in some way.  Fortunately, a 
number of programs and packages already provide the kinds of automation to make this 
process feasible.  Here, I focus on methods for correlated evolution involving 
independent contrasts and phylogenetic generalized least squares (PGLS) in R, and 
methods to study correlated evolution in the program BayesTraits. 
 
For an example dataset, we will investigate the association between Trait Y and Trait X 
from Exercise 1, and the modified tree from Exercise 3.  Recall that we simulated these 
data on the tree under a specific model of evolution and a specific branch length 
transformation.  We will assess how well the methods reconstruct the “true” parameters 
that were simulated, and how phylogenetic uncertainty among the species in our 
hypothetical data affect the outcome of statistical results. 
 
 
Before proceeding, please note:  This exercise is only intended to give you a glimpse 
of how to run the analyses that follow.  Further reading is necessary to implement the 
methods correctly, such as checking assumptions.  I hope this opens up possibilities for 
you to make use of the tree blocks from 10kTrees, but please cite the appropriate 
software program and package files for implementation, and be sure you understand all 
of the code that follows before using the results in published papers. 
 
 
1) Calculating Independent Contrasts Across a Tree Block in R 
 
We will calculate independent contrasts using the ape package.  Open R.  To use ape, 
we must first download and install it.  To load a package that has already been installed 
in your R system, you can type library(“ape”); otherwise, type 
install.packages(“ape”). You can also use the graphical interfaces for 
downloading and installing via the menus. 
 
You will also need the data for this exercise (edu_data.csv), and the tree from Exercise 
3 (also available on the server if you skipped this exercise).  Put the two files in a folder 
of your choice. 
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Once you have successfully installed ape and acquired the files, change the working 
directory to the directory where the files are located (e.g., using the Misc menu on a 
Mac, or the setwd() function; see previous exercises).   
 
After loading the ape library, let’s read in our tree file.  Open the text file to take a quick 
look at the format and remind yourself of the Nexus format.  Then, import the tree using 
“read.nexus” in the ape package. 
 

tree_list <- read.nexus("treeblock_example.nex.ber.nex.coq.nex") 
 
As you will recall, the tree block consists of 200 trees downloaded from the 10kTrees 
website.  Let’s plot the second tree in the file by passing that tree to a new variable, 
“tree”, as follows: 
 
 tree2 <- tree_list[[2]] 
 plot(tree2) 
 
Now, let’s read in the data: 
 
 data.yx <- read.csv("edu_data.csv", header=T) 
 
And, to make our lives easiers, let’s assign the values in the data frame to new 
variables for “trait.Y” and “trait.X”, as follows: 
 
 trait.Y <- data.yx$Trait.Y 
 trait.X <- data.yx$Trait.X 
 
Type these variables to see the vector of values, and compare to what is seen when 
you type “data.yx”. 
 
Now, let’s assign names to characters, which is necessary for linking up the data to the 
tree. 
 

names(trait.Y) = data.yx$Species 
names(trait.X) = data.yx$Species 

 
Now type the variable names again, e.g., “trait.Y”.  Do you see how the names are now 
linked to the data vectors?  Does this match what you saw in the table for “data”? 
 
Now that we have variables with names, we can use the “pic” command to calculate 
“phylogenetically independent contrasts” for each variable.  Give it a try, using tree #1, 
and then we will apply what we learn to the tree block. 
 
First, calculate the contrasts on tree 1 with the pic function: 
 

pic.trait.Y <- pic(trait.Y, tree_list[[1]]) 
pic.trait.X <- pic(trait.X, tree_list[[1]]) 
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To display the contrasts graphically: 
 

plot(pic.trait.Y, pic.trait.X) 
 

And on the actual tree, at the nodes: 
 
plot(tree_list[[1]]) 
nodelabels(round(pic.trait.Y, 3), adj = c(0, -0.5),frame = 
"n") 
nodelabels(round(pic.trait.X, 3), adj = c(0, 1),frame = "n") 

 
We can then run a linear model through the origin (don’t forget that “-1” at the end of the 
model specification!  This puts the regression through the origin.) 
 

lmResult <- lm(pic.trait.Y ~ pic.trait.X - 1) 
summary(lmResult) 

 
Interestingly, these variables appear to show no association using independent 
contrasts calculated on tree 1; the regression coefficient is not significantly different 
from zero: 
 

Call: 
lm(formula = pic.trait.Y ~ pic.trait.X - 1) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-5.4282 -1.1328 -0.3391  0.3865  4.9279  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
pic.trait.X   0.2181     0.2033   1.073    0.291 
 
Residual standard error: 1.948 on 33 degrees of freedom 
Multiple R-squared: 0.03372, Adjusted R-squared: 0.004439  
F-statistic: 1.152 on 1 and 33 DF,  p-value: 0.291  

 
 
Now, let’s build a simple loop to go through all the trees, and to store the results for 
each tree.  We will use a for loop, which will go from tree 1 to tree 200, calculating 
contrasts and storing key results in vectors. 
 

slope_list<- tstat_list <- pval_list <-matrix(0, 
length(tree_list)) 
 
for (i in 1:length(tree_list)) 
{ 

pic.trait.Y <- pic(trait.Y, tree_list[[i]]) 
pic.trait.X <- pic(trait.X, tree_list[[i]]) 
 
lmOut <- summary(lm(pic.trait.Y ~ pic.trait.X - 1)) 
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slope_list[i]=lmOut$coefficients[1] 
tstat_list[i]=lmOut$coefficients[3] 
pval_list[i]=lmOut$coefficients[4] 

} 
 
Take a look at the code to try to understand it.  And then copy and paste into R... it may 
take several minutes for all the calculations to complete. 
 
Now, with the list of slopes, t-statistics and p-values, we can say a lot about the 
statistical results.  For example, find the largest p-value and the mean p-value across 
the 200 calculations: 
 

max(pval_list) 
mean(pval_list) 
min(pval_list) 

 
The maximum is ~0.62, while the minimum is <0.0001.  Thus, it appears that these 
results depend on the tree used!  Typing hist(pval_list, 100), however, reveals 
that most of the of the tests were not significant. 
 
To use this approach, you would need to find that all statistics are above (or below) this 
cut-off.  A more mixed result is harder to interpret, and suggests that you should use the 
Bayesian approach implemented in BayesTraits (see below). 
 
Remember as well that you should be checking the assumptions of independent 
contrasts.  
 
 
2) PGLS Across a Tree Block in R 
 
Phylogenetic generalized least squares (PGLS) offers important advantages over 
independent contrasts (IC). The model of trait evolution can be more flexible, i.e. it can 
depart from a strict “Brownian motion” process. In particular, different scaling 
parameters (e.g., λ) can be estimated and incorporated into the analysis, which can 
significantly improve the fit of the data to the model and thus also improve the 
estimation of statistical parameters of interest, such as regression coefficients.  Another 
advantage of PGLS is that the intercept of the regression model is not forced to equal 0; 
we can estimate the intercept much as one would in an ordinary regression, and this 
can be useful for testing certain hypotheses and for predicting traits values based on the 
model. 
 
In fact, IC represents a special case of PGLS. Thus, if λ does not depart from 1.0 (which 
implies Brownian motion), GLS will return results that are identical to independent 
contrasts. If the assumption of Brownian motion is incorrect, however, then λ will depart 
from 1.0.  Incorporating a scaling parameter such as λ into the analysis is interesting for 
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its own sake - e.g., as a measure of phylogenetic signal - and it can result in different 
parameter estimates than IC for parameters of the statistical model. 
 
The PGLS approach that we will use is implemented in R and the R phylogenetics 
package ape and one of the R linear modeling packages nlme.  
 
Open R and verify that you installed and loaded the ape and nlme packages: 
 
 install.packages("ape")  # if needed 

library(ape)  
 

install.packages("nlme") 
library(nlme)  

 
Next change the working directory to the directory where the files for this example are 
located on your computer using, e.g., the “Misc” menu or the setwd function (see 
above).  
 
If you haven’t completed the first part of this exercise, acquire the necessary files and 
place them in a folder, as above.  Then, import the phylogeny: 
 
 tree_list <- read.nexus("treeblock_example.nex.ber.nex.coq.nex") 
 
Now, let’s read in the data on group composition (unless done above in your currently 
open R session): 
 
 data.yx <- read.csv("edu_data.csv", header=T) 
 trait.Y <- data.yx$Trait.Y 
 trait.X <- data.yx$Trait.X 

names(trait.Y) = data.yx$Species 
names(trait.X) = data.yx$Species 

 
To begin, let’s run the analysis on tree 1, and then expand to the full tree block.  First, 
let’s declare a phylogenetic structure based on our tree and a Brownian motion model of 
evolution.  We also need to create a data frame for our data, to provide to the gls 
function. 
 

bm.tree1_lam1 <- corPagel(value = 1,phy = tree_list[[1]], 
fixed=T) 
DF <- data.frame(trait.Y, trait.X) 

 
This last step might seem redundant, since we already have the data frame “data.yx”.  
However, it ensures that the names are in the same order as tree tips and matches up 
names of columns. 
 
 
We are now ready to run the GLS with our correlation structure set as the tree. 
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outTree1Lambda1 <- gls(trait.Y ~ trait.X, correlation = 
bm.tree1_lam1,data = DF, method= "ML") 

 
To get the results, let’s use the handy “summary” function: 
 
 summary(outTree1Lambda1)  
 
The following output should appear which, as expected based on λ=1, are nearly 
identical to the output from independent contrasts above: 
 

Generalized least squares fit by maximum likelihood 
  Model: trait.Y ~ trait.X  
  Data: DF  
       AIC      BIC    logLik 
  252.1573 256.8233 -123.0787 
 
Correlation Structure: corPagel 
 Formula: ~1  
 Parameter estimate(s): 
lambda  
     1  
 
Coefficients: 
                Value Std.Error   t-value p-value 
(Intercept) 1.7012613  7.336423 0.2318925  0.8181 
trait.X     0.2181325  0.203267 1.0731315  0.2910 
 
 Correlation:  
        (Intr) 
trait.X 0.069  
 
Standardized residuals: 
        Min          Q1         Med          Q3         Max  
-0.97764402 -0.40107201 -0.06518098  0.12961331  0.85326219  
 
Residual standard error: 16.11462  
Degrees of freedom: 35 total; 33 residual 

 
R outputs intercept (1.70) and slope (0.22) for the regression model, along with 
standard errors, t-statistics and p-values for intercept and slope.  We can also obtain the 
log-likelihood (-123.1) and other estimates of model fit, such as AIC.  Finally, you can 
obtain residuals from the model, as follows: 
 
 outTree1Lambda1$residuals 
 
The analysis in R should be identical to an IC analysis.  However, we can also estimate 
λ and incorporate estimates of λ into the analysis.  In other words, we can obtain a 
measure of phylogenetic signal, and then tailor the method to take into account that 
level of signal when running the GLS (R can also estimate and set kappa and delta with 
slightly different code, or the Ornstein-Uhlenbeck model for stabilizing selection).  
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To set λ to zero, which is equivalent to a non-phylogenetic analysis, modify the “value” 
to be zero (it can actually take any value you want, between 0 and 1): 
 

bm.tree1_lam0 <- corPagel(value = 0,phy = tree_list[[1]], 
fixed=T) 

 
Re-execute the R code again, typing: 
 

outTree1Lambda0 <- gls(trait.Y ~ trait.X, correlation = 
bm.tree1_lam0,data = DF, method= "ML") 

 
The PGLS results will be different - and interestingly, the likelihood is higher when λ is 
set to zero, suggesting that in fact a value of 1 - as is assumed in independent contrasts 
- is inappropriate.  The question is, what should we set λ to equal?  Maybe the 
maximum likelihood estimate of λ lies between 0 and 1. 
 
You can estimate the maximum likelihood value of lambda.  Re-type the code to read: 
 

bm.tree1_lamEst <- corPagel(value = 0,phy = tree_list[[1]], 
fixed=F) 

 
The "fixed=F" part indicates that it is false (F) that we are setting lambda to 1 (T stand 
for true in R function parameter values).  Thus, we are obtaining the maximum 
likelihood estimate of λ. 
 
Now, run the gls model again, with this new corPagel structure.   
 

outTree1LambdaEst <- gls(trait.Y ~ trait.X, correlation = 
bm.tree1_lamEst,data = DF, method= "ML") 

 
We can see that for this tree, the maximum likelihood estimate of λ is 0.58, which is very 
close to the λ transformation used to simulate the data (λ=0.7).  
 
Now, let’s run this analysis across the whole tree block, again using a loop as in the 
section for independent contrasts: 
 

slope_list<- tstat_list <- pval_list <- lamb_list <- 
likeli_list <-matrix(0, length(tree_list)) 
 
for (i in 1:length(tree_list)) 
{ 

bm.tree1_lamEst <- corPagel(value = 0,phy = 
tree_list[[i]], fixed=F) 

 
 
outTree1LambdaEst = summary( gls(trait.Y ~ trait.X, 
correlation = bm.tree1_lamEst,data = DF, method= "ML")) 
 
lamb_list[i]= attr(outTree1LambdaEst$apVar, "Pars")[1] 
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slope_list[i]=outTree1LambdaEst$coefficients[2] 
pval_list[i]=outTree1LambdaEst$tTable[2,4] 
tstat_list[i]=outTree1LambdaEst$tTable[2,3] 
likeli_list[i]=outTree1LambdaEst$logLik 
} 
 

 
Let’s check out the distribution of the various statistics using the hist() function; copy 
and paste these one at a time: 
 

hist(lamb_list,50) 
hist(slope_list,50) 
hist(pval_list,50) 
hist(tstat_list,50) 
hist(likeli_list,50) 

 
What can we interpret from these distributions?  First of all, the distribution of lambda is 
fairly tight across the trees, but is not centered on the expected value of 0.7.  This could 
indicate bias in estimating λ, but we can’t determine that based on a single simulation; 
the data would need to be simulated multiple times, and ideally on multiple trees.  An 
important conclusion, however, is that λ is clearly neither zero nor 1. 
 
Second, the slopes all cluster above zero.  Does this necessarily mean that the effect is 
significant?  No.  All we see here are variation in estimating the slope based on variation 
in the topology and branch lengths.  The estimates could have wide errors despite a 
tight distribution of values in the context of phylogenetic uncertainty.  To assess 
statistical significance, we need to examine the p-values or t-statistics.   
 
Finally, results are in fact significant on all the trees, based on the distribution of p-
values or t-statistics.  This differs sharply from the finding using independent contrasts, 
where λ was, in effect, forced to equal 1.  Failing to fit scaling parameters such as λ can 
potentially lead you to miss interesting findings!  And we can say with confidence that 
phylogenetic uncertainty does not affect the conclusions from these analyses; these two 
variables are related to one another for each tree. 
 
It is worth noting that in some cases, when λ is very close to 0 or 1, the scripts can 
crash due to an optimization error.  If this happens across your tree block and you have 
good reason, based on the estimates of λ for the traits on a subset of trees, to expect 
that λ is close to 0 or 1, simply set it a fixed value in the analysis, rather than estimating 
it.  
 
 
Correlation and Regression Models in BayesTraits 
 
Start by downloading the program BayesTraits 
(http://www.evolution.reading.ac.uk/BayesTraits.html).  An installation is not necessary.  
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BayesTraits is available for different operating systems; here, I describe the Mac 
version. 
 
For this example, you will need two files. The first file is the tree file, which is the same 
as used above (treeblock_example.nex.ber.nex.coq.nex).  The second file is a data file.  
We need to slightly alter the file used above, specifically by removing the headers and 
saving as a tab-delimited text file. Do that, and rename the file “edu_data_nh.txt”. 
 
Now, put both the BayesTraits executable and the two files that are needed into the 
same directory in order to run the analysis. You can either copy the data files into the 
BayesTraits directory or copy the BayesTraits executable into the folder where the data 
files are.  
 
Open a command line (e.g. click on Start -> Run and type “cmd,” if you use Windows or 
open the “terminal” window on a Mac).  On a PC, navigate to the folder containing the 
necessary files for this example. 
 
BayesTraits must be started by declaring the program file on the command line, 
followed by two additional files: the tree file and the data file (in that order).  E.g., you 
might see something really hideous like this on your command line: 
 

charlie-nunns-macbook-pro:  ./BayesTraits 
./treeblock_example.nex.ber.nex.coq.nex ./edu_data_nh.txt 

 
The “./BayesTraits” is the path to the program.  The 
“treeblock_example.nex.ber.nex.coq.nex” is the path to the tree file.  And the 
“./edu_data_nh.txt” is the path to the data file.  Note that these paths are simply 
separated by spaces.  On a mac, you can also simply drag the files directly to the 
command line (the paths will be much longer, but it works...).  Here, on my Mac, I 
navigated to the folder with the 3 files using the setwd() command, and then used the 
“./” command in front of each file so that the terminal window “knows” to look in the 
folder to which I navigated. 
 
If everything worked, you should now see a menu that consists of 6 items.  
 

Rand Seed 1286833159 
Please Select the model of evolution to use. 
1) MultiState. 
2) Discrete: Independent 
3) Discrete: Dependant 
4) Continuous: Random Walk (Model A) 
5) Continuous: Directional (Model B) 
6) Continuous: Regression 

 
Ignore the “Rand Seed,” which relates to the random number generator.   
 
In this case, let’s try a correlation model under a “random walk,” which can be 
implemented with option 4 (you will need to consult the manual and additional sources 
to understand all the options).  Type 4, and you will next see: 
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Please Select the analysis method to use. 
1) Maximum Likelihood. 
2) MCMC 

 
This allows you to choose if you want to use maximum likelihood or Bayesian (MCMC) 
approaches for the regression analysis.  With a tree block, it is more appropriate to use 
the Bayesian option; in this case, the model will use MCMC to select parameters of the 
statistical model, while also randomly selecting a tree from the 200 that you will provide 
to the program.  You can then integrate the results across the MCMC samples. 
 
So, type “2”. The following text (or something like it) should appear on the screen, 
summarizing all parameters and settings: 
 

Options: 
Model:                           Continuous Random Walk 
Tree File Name:                  /Users/charlienunn/Desktop/learn 
r/treeblock_example.nex.ber.nex.coq.nex 
Data File Name:                  /Users/charlienunn/Desktop/learn 
r/edu_data_nh.txt 
Log File Name:                   /Users/charlienunn/Desktop/learn 
r/edu_data_nh.txt.log.txt 
Summary:                         False 
Analysis Type:                   MCMC 
Sample Period:                   100 
Iterations:                      5050000 
Burn in:                         50000 
Rate Dev:                        2.000000 
No of Rates:                     2 
Test for trait correlation:      True 
Kappa                            Not in use 
Delta                            Not in use 
Lambda                           Not in use 
Restrictions: 
    alpha-1                      None 
    alpha-2                      None 
Prior Information: 
    Prior Categories:            100 
    alpha-1                      uniform -100.00 100.00  
    alpha-2                      uniform -100.00 100.00  
Tree Information 
     Trees:                      1000 
     Taxa:                       35 
     Sites:                      2 
>  

 
 
The output will be written to a file called “edu_data_nh.txt.log.txt”, which will be found 
in the folder with your input files.  You can change the name of the output file using the 
log-file command “lf”, followed by the name of the new file you’d like to use (it will create 
it, e.g. “lf ./output”).  
 
The three scaling parameters λ, δ and κ are also displayed, and they can be either fixed 
(e.g. by typing “lambda 0.5”), estimated (e.g., type “lambda” or “la”), or left at the 
default value 1 (printed as “Not in use”, or type “lambda 1”).  
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Whenever you change a setting, you can type “info” to confirm that the change is in 
effect. For example, after typing “lambda 0.5” and then “info”, the lambda line 
should look as follows. 
 

Lambda                           0.500000 
 
Now, it is time to run the analyses.  
 
Let’s estimate lambda, but leave the other scaling parameters as they are.  To do this, 
type lambda.  (Note:  shortcuts are possible for each of the commands; see the 
appendix of the BayesTraits manual.) Type "run" to conduct the analysis, and after the 
numbers start scrolling down the screen, type control-C to stop the program before it 
scrolls too far.  
 
The output should look something like this: 
 
Iteration Tree No Lh HMean Alpha Trait 1 Alpha Trait 2 Trait 
1 Var Trait 2 Var Trait 1 2 Co-Var Lambda Acceptance 
50000 866 -16.601041 -16.601041 0.493571 0.447726 0.009342
 0.010336 0.008437 1.000000 0.000000 
50100 866 -16.601041 -16.601041 0.493571 0.447726 0.009342
 0.010336 0.008437 1.000000 0.000000 
50200 866 -16.601041 -16.601041 0.493571 0.447726 0.009342
 0.010336 0.008437 1.000000 0.000000 
50300 866 -16.601041 -16.601041 0.493571 0.447726 0.009342
 0.010336 0.008437 1.000000 0.000000 
50400 866 -16.601041 -16.601041 0.493571 0.447726 0.009342
 0.010336 0.008437 1.000000 0.000000 
50500 866 -20.497089 -18.284196 0.576454 1.127474 0.009515
 0.012360 0.009267 1.000000 0.010000 
50600 866 -20.497089 -19.096296 0.576454 1.127474 0.009515
 0.012360 0.009267 1.000000 0.000000 
50700 866 -20.497089 -19.438317 0.576454 1.127474 0.009515
 0.012360 0.009267 1.000000 0.000000 
50800 866 -20.497089 -19.638404 0.576454 1.127474 0.009515
 0.012360 0.009267 1.000000 0.000000 
50900 866 -20.497089 -19.772204 0.576454 1.127474 0.009515
 0.012360 0.009267 1.000000 0.000000 
51000 866 -20.497089 -19.868768 0.576454 1.127474 0.009515
 0.012360 0.009267 1.000000 0.000000 
51100 866 -20.497089 -19.942056 0.576454 1.127474 0.009515
 0.012360 0.009267 1.000000 0.000000 
 
etc. 
 
Pretty hard to follow, but we’ll clean it up.  In particular, the text is not perfectly lined up 
under the headings.  Let's open the “output” file in Excel to see the columns of output. 
 
You will see a summary at the top, and then columns A to L will give results related 
several key output variables for each MCMC sample, including the tree number used 
(“Tree No”), likelihood (“Lh”), the variance of the traits, their covariance, and an 
estimate of phylogenetic signal (“Lambda”).   
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In the last column is a header called “Acceptance”, and before going any further, let’s 
take a close look at this number across MCMC samples (i.e., down the rows, where the 
iteration number is shown in the far left).  You can see that it is very high, on the order 
of 0.8.  According to the BayesTraits manual, we need to boost that number up to 
around 0.2 to 0.4.  Ideally, averaged across that column, the average would come out 
somewhere in this range, say around 0.3.  So, let’s restart the analysis, and learn how 
to tweak a parameter - ratedev - that will increase or decrease the acceptance rate. 
 
Restart the program by using the up-arrow, retyping the code from above, or dragging 
the files - whatever works best for you: 
 

charlie-nunns-macbook-pro:  ./BayesTraits 
./treeblock_example.nex.ber.nex.coq.nex ./edu_data_nh.txt 

 
When you get to the point of setting parameters, such as lambda, we will set ratedev, as 
follows: 
 
 ratedev 10 
 
Moving ratedev up will decrease the acceptance rate. 
 
Be sure to set lambda 1, and restart the program.  Does the acceptance rate go down?  
Eyeballing the rightmost column of output in your terminal window, does it look to 
average about 0.25?  If so, let the program run until it stops; if not, repeat, using larger 
or smaller values of ratedev until it appears to have an acceptance rate around 0.25 
(just eyeball based on the last column of data in the window). 
 
FYI, I found that ratedev of 20 seemed to work pretty well.  The program will take a long 
time to run, so be patient... ~5 minutes for this dataset depending on the computer you 
are using.  The default number of iterations it probably too high - you can reduce the run 
time by setting it to something like 1,050,000, e.g. type: it 1050000 
 
When the program is finished, open it in Excel or some other spreadsheet program.  
You could also strip out the first summary of the text file in a text editor, and then open 
the file in R.   
 
The next step is very easy.   You can simply obtain means for the different parameters 
of interest, such as λ, or 95% “credible intervals,” or count the percentage of the time 
that a coefficient is positive – the choice is really up to you, depending on how you want 
to make your statistical inferences (there is a lot of flexibility with Bayesian output, such 
as this).  It is also often useful to present distributions of values as histograms.   
 
Let’s take an example with the correlation coefficient, which can be calculated across 
the MCMC sample in a spreadsheet program by, for each row, dividing the covariance 
by the square roots of each of the variances.  Using R, I found that the mean correlation 
between the two simulated traits is 0.49.  This estimate is slightly lower than the value 
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used in the simulation of the data (r=0.6), which can be seen graphically with the hist() 
function:   
 

 
 
In this correlational model, the estimate of λ ranges from 0.09 to 0.97, with a mean of 
0.61.  This again suggests that phylogeny is important, and that independent contrasts, 
with its assumption of λ=1, is inappropriate for these data. 
 
 
 
 
Good luck, and please remember that this lab is only intended as an initial introduction.  
There is much more to these tests, and many sources for starting to learn more, 
including: 
 
Freckleton, R. P., P. H. Harvey, and M. Pagel. 2002. Phylogenetic analysis and 
comparative data: A test and review of evidence. American Naturalist 160:712-726. 
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Finally, a variety of wikis and websites - in addition to this one - provide advice on 
running phylogenetic analyses in R. Check out, for example, the "R-phylo wiki", or the 
wiki associated with the Bodega Bay Workshop for Applied Phylogenetics.  Brian 
O'Meara has produced a great CRAN Task View on "Phylogenetics, Especially 
Comparative Methods."  Or better yet, consider taking the Bodega workshop, or the one 
that I run - the AnthroTree Workshop. 
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